806 research outputs found

    Neo-Atlantis: Dutch Responses to Five Meter Sea Level Rise

    Get PDF
    What would happen to the Netherlands if, in 2030, the sea level starts to rise and eventually, after 100 years, a sea level of five meters above current level would be reached? Two socio-economic scenarios are developed from a literature review and by interviews with researchers and practicionersin the domains of social sciences, economics, civil engineering, and land use planning. One scenario describes what would happen in a future characterised by a trend towards further globalisation, marketisation and high economic growth, while the other scenario happens in a future under opposite trends. Under both scenarios, the Southwest and Northwest of the Netherlands – already now below seal level - would be abandoned because of sea level rise. Although most experts believe that geomorphology and current engineering skills allow to largely maintain the territorial integrity of the Netherlands, there are some reasons to assume that this is not likely to happen. Social processes that precede important political decisions – such as the growth of the belief in the reality of SLR and the framing of such decision in a proper political context (policy window) – evolve slowly. Although a flood disaster would speed up decision-making, the general expectation is that decisions would come too late in view of the rate of SLR and the possible pace of construction of works.Extreme sea level rise, The Netherlands, flood defences

    The Haptic Bracelets: learning multi-limb rhythm skills from haptic stimuli while reading

    Get PDF
    The Haptic Bracelets are a system designed to help people learn multi-limbed rhythms (which involve multiple simultaneous rhythmic patterns) while they carry out other tasks. The Haptic Bracelets consist of vibrotactiles attached to each wrist and ankle, together with a computer system to control them. In this chapter, we report on an early empirical test of the capabilities of this system, and consider de-sign implications. In the pre-test phase, participants were asked to play a series of multi-limb rhythms on a drum kit, guided by audio recordings. Participants’ per-formances in this phase provided a base reference for later comparisons. During the following passive learning phase, away from the drum kit, just two rhythms from the set were silently 'played' to each subject via vibrotactiles attached to wrists and ankles, while participants carried out a 30-minute reading comprehen-sion test. Different pairs of rhythms were chosen for different subjects to control for effects of rhythm complexity. In each case, the two rhythms were looped and alternated every few minutes. In the final phase, subjects were asked to play again at the drum kit the complete set of rhythms from the pre-test, including, of course, the two rhythms to which they had been passively exposed. Pending analysis of quantitative data focusing on accuracy, timing, number of attempts and number of errors, in this chapter we present preliminary findings based on participants’ sub-jective evaluations. Most participants thought that the technology helped them to understand rhythms and to play rhythms better, and preferred haptic to audio to find out which limb to play when. Most participants indicated that they would pre-fer using a combination of haptics and audio for learning rhythms to either mo-dality on its own. Replies to open questions were analysed to identify design is-sues, and implications for design improvements were considered

    Haptics for the development of fundamental rhythm skills, including multi-limb coordination

    Get PDF
    This chapter considers the use of haptics for learning fundamental rhythm skills, including skills that depend on multi-limb coordination. Different sensory modalities have different strengths and weaknesses for the development of skills related to rhythm. For example, vision has low temporal resolution and performs poorly for tracking rhythms in real-time, whereas hearing is highly accurate. However, in the case of multi-limbed rhythms, neither hearing nor sight are particularly well suited to communicating exactly which limb does what and when, or how the limbs coordinate. By contrast, haptics can work especially well in this area, by applying haptic signals independently to each limb. We review relevant theories, including embodied interaction and biological entrainment. We present a range of applications of the Haptic Bracelets, which are computer-controlled wireless vibrotactile devices, one attached to each wrist and ankle. Haptic pulses are used to guide users in playing rhythmic patterns that require multi-limb coordination. One immediate aim of the system is to support the development of practical rhythm skills and multi-limb coordination. A longer-term goal is to aid the development of a wider range of fundamental rhythm skills including recognising, identifying, memorising, retaining, analysing, reproducing, coordinating, modifying and creating rhythms – particularly multi-stream (i.e. polyphonic) rhythmic sequences. Empirical results are presented. We reflect on related work, and discuss design issues for using haptics to support rhythm skills. Skills of this kind are essential not just to drummers and percussionists but also to keyboards players, and more generally to all musicians who need a firm grasp of rhythm

    Whole body interaction in abstract domains

    Get PDF
    Whole Body Interaction appears to be a good fit of interaction style for some categories of application domain, such as the motion capture of gestures for computer games and virtual physical sports. However, the suitability of whole body interaction for more abstract application domains is less apparent, and the creation of appropriate whole body interaction designs for complex abstract areas such as mathematics, programming and musical harmony remains challenging. We argue, illustrated by a detailed case study, that conceptual metaphor theory and sensory motor contingency theory offer analytic and synthetic tools whereby whole body interaction can in principle be applied usefully to arbitrary abstract application domains. We present the case study of a whole body interaction system for a highly abstract application area, tonal harmony in music. We demonstrate ways in which whole body interaction offers strong affordances for action and insight in this domain when appropriate conceptual metaphors are harnessed in the design. We outline how this approach can be applied to abstract domains in general, and discuss its limitations

    Identification of the sex pheromone of the tree infesting Cossid Moth Coryphodema tristis (Lepidoptera: Cossidae)

    Get PDF
    The cossid moth (Coryphodema tristis) has a broad range of native tree hosts in South Africa. The moth recently moved into non-native Eucalyptus plantations in South Africa, on which it now causes significant damage. Here we investigate the chemicals involved in pheromone communication between the sexes of this moth in order to better understand its ecology, and with a view to potentially develop management tools for it. In particular, we characterize female gland extracts and headspace samples through coupled gas chromatography electro-antennographic detection (GC-EAD) and two dimensional gas chromatography mass spectrometry (GCxGC-MS). Tentative identities of the potential pheromone compounds were confirmed by comparing both retention time and mass spectra with authentic standards. Two electrophysiologically active pheromone compounds, tetradecyl acetate (14:OAc) and Z9-tetradecenyl acetate (Z9-14:OAc) were identified from pheromone gland extracts, and an additional compound (Z9-14:OH) from headspace samples. We further determined dose response curves for the identified compounds and six other structurally similar compounds that are common to the order Cossidae. Male antennae showed superior sensitivity toward Z9-14:OAc, Z7-tetradecenyl acetate (Z7-14:OAc), E9-tetradecenyl acetate (E9-14:OAc), Z9-tetradecenol (Z9-14:OH) and Z9-tetradecenal (Z9-14:Ald) when compared to female antennae. While we could show electrophysiological responses to single pheromone compounds, behavioral attraction of males was dependent on the synergistic effect of at least two of these compounds. Signal specificity is shown to be gained through pheromone blends. A field trial showed that a significant number of males were caught only in traps baited with a combination of Z9-14:OAc (circa 95 of the ratio) and Z9-14:OH. Addition of 14:OAc to this mixture also improved the number of males caught, although not significantly. This study represents a major step towards developing a useful attractant to be used in management tools for C. tristis and contributes to the understanding of chemical communication and biology of this group of insects
    corecore